English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 1914/17082 (11%)
造訪人次 : 3941044      線上人數 : 1020
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/2695


    題名: Nonlinear measures of association with kernel canonical correlation analysis and applications
    作者: Su-Yun Huang
    Mei-Hsien Lee
    Chuhsing Kate Hsiao
    李美賢
    貢獻者: 臺北市立教育大學數學資訊教育學系
    關鍵詞: Association measure
    Canonical correlation analysis
    Dimension reduction
    Kernel method
    Multivariate analysis
    Reproducing kernel
    Reproducing kernel Hilbert space
    Test of independence
    日期: 2009
    上傳時間: 2009-08-04 10:47:49 (UTC+8)
    摘要: Measures of association between two sets of random variables have long been of interest to statisticians. The classical canonical correlation analysis (LCCA) can characterize, but also is limited to, linear association. This article introduces a nonlinear and nonparametric kernel method for association study and proposes a new independence test for two sets of variables. This nonlinear kernel canonical correlation analysis (KCCA) can also be applied to the nonlinear discriminant analysis. Implementation issues are discussed. We place the implementation of KCCA in the framework of classical LCCA via a sequence of independent systems in the kernel associated Hilbert spaces. Such a placement provides an easy way to carry out the KCCA. Numerical experiments and comparison with other nonparametric methods are presented.
    關聯: Journal of Statistical Planning and Inference, V139(7), P.2162-2174
    顯示於類別:[數學系(含數學教育碩士班)] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋