English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 1914/17082 (11%)
造訪人次 : 3939658      線上人數 : 934
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/15269


    題名: Applications Related to the Generalized Seidel Matrix
    作者: Chen, Kwang-Wu;陳光武
    日期: 2005
    上傳時間: 2016-04-28 15:29:17 (UTC+8)
    關聯: Let α, β be any numbers. Given an initial sequence a 0, m (m = 0, 1, 2, ⋯), define the sequences an,m (n ≥ 1) recursively by an, m = αan-1,m + βan-1,m+1, for n ≥ 1, m ≥ 0. We call the matrix (a n,m)n,m≥0 as a generalized Seidel matrix with a parameter pair (α,β). If α = β= 1, then this matrix is the classical Seidel matrix. For various different parameter pairs (α, β) we will impose some evenness or oddness conditions on the exponential generating functions of the initial sequence a0,m and the final sequence an,0 of a genaralized Seidel matrix (i.e., we require that these generating functions or certain related functions are even or odd). These conditions imply that the initial sequences and final sequences are equal to well-known classical sequences such as those of the Euler numbers, the Genocchi numbers, and the Springer numbers. As applications, we give a straightforward proof of the continued fraction representations of the ordinary generating functions of the sequence of Genocchi numbers. And we also get the continued fractions representations of the ordinary generating functions of the Genocchi polynomials, Bernoulli polynomials, and Euler polynomials. Lastly, we give some applications of congruences for the Euler polynomials.
    顯示於類別:[數學系(含數學教育碩士班)] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋