University of Taipei:Item 987654321/2716
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 1922/17135 (11%)
Visitors : 4505780      Online Users : 1330
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/2716


    Title: 『是非題』作答之腦電波辨識與『選擇題』作答之腦電波分析
    Authors: 張菀珍
    蔡俊明
    葉榮木
    Keywords: 認知科學
    大腦人機介面
    腦電波
    線性鑑別分析
    Date: 2009-09
    Issue Date: 2010-06-07 18:48:58 (UTC+8)
    Abstract: 大腦認知活動的分析,目前在教育心理學和認知神經科學等領域被廣泛的進行研究,本研
    究目的除了將腦電波訊號做資料分類的分析可應用在大腦人機介面(brain computer interface,
    BCI)之外,同時,探討不同類型的問題對大腦認知活動的影響。
    在腦電波訊號分析的部分,本研究以所設計的兩種類型選擇題作為問題刺激,來探討受測
    者在思考不同類型問題時腦電波頻段上的差異,實驗結果發現,選擇題答題之腦電波分析,存
    在明顯且一致性的差異。即受測者的 Theta 頻段在思考「數學問題」時的能量,均高於思考「圖
    形幾何問題」的能量,但在 Alpha 頻段的結果則恰好相反。
    在想像辨識的部份,本實驗除了成功辨識想像「是」與「非」的腦電波外,並發現在時域
    部份所擷取的腦電波具有相當好的鑑別性,藉由線性鑑別分析法(linear discriminant analysis,
    LDA)找出最佳的轉換向量,能讓資料更具鑑別性,再由計算特徵矩陣間的歐氏距離就可以有
    效的分類腦電波。研究結果顯示,本實驗使用了 C3、C4 及 F3 三個電極,可以使腦電波辨識的
    準確率大幅提升至 99%。
    本研究建議,未來可將此系統和大腦人機介面系統後端(機器人、輪椅等)做連結,以服
    務更多行動不方便的人士。
    Relation: 科學與工程技術期刊
    Appears in Collections:[Department of Computer Science] Periodical Articles

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2649View/Open


    All items in uTaipei are protected by copyright, with all rights reserved.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback