University of Taipei:Item 987654321/2655
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2446/17084 (14%)
Visitors : 3222279      Online Users : 489
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/2655


    Title: I. Three-center versus four-center HCl-elimination in photolysis of vinyl chloride at 193 nm: Bimodal rotational distribution of HCl (v <= 7) detected with time-resolved Fourier-transform spectroscopy
    Authors: Lin SR.
    Lee YC.
    Chou YC.
    Chen IC.
    Lee YP.
    Lin SC.
    周永慶
    Contributors: 臺北市立教育大學自然科學系
    Date: 2001
    Issue Date: 2009-07-31 16:13:29 (UTC+8)
    Abstract: Following photodissociation of vinyl chloride at 193 nm, fully resolved vibration-rotational emission spectra of HCl in the spectral region 2000-3310 cm(-1) are temporally resolved with a step-scan Fourier-transform spectrometer. Under improved resolution and sensitivity, emission from HCl up to upsilon = 7 is observed, with J > 32 (limited by overlap at the band head) for upsilon = 1-3. All vibrational levels show bimodal rotational distribution with one component corresponding to similar to 500 K and another corresponding to similar to 9500 K for upsilon less than or equal to 4. Vibrational distributions of HCl for both components are determined; the low-J component exhibits inverted vibrational population of HCl. Statistical models are suitable for three-center (alpha, alpha) elimination of HCl because of the loose transition state and a small exit barrier for this channel; predicted internal energy distributions of HCl are consistent but slightly less than those observed for the high-J component. Impulse models considering geometries and displacement vectors of transition states during bond breaking predict substantial rotational excitation for three-center elimination of HCl but little rotational excitation for four-center (alpha, beta) elimination; observed internal energy of the low-J component is consistent with that predicted for the four-center elimination channel. Rate coefficients 33.8 and 4.9X10(11) s(-1) for unimolecular decomposition predicted for three-centerand four-center elimination channels, respectively, based on Rice-Ramsberger-Kassel-Marcus theory are consistent with the branching ratio of 0.81:0.19 determined by counting vibrational distribution of HCl to upsilon less than or equal to 6 for high-J and low-J components. Hence we conclude that observed high-J and low-J components correspond to HCl (upsilon, J) produced from three-center and four-center elimination channels, respectively. (C) 2001 American Institute of Physics. [References: 31]
    Relation: The Journal of Chemical Physics, V.114(1),
    Appears in Collections:[Department of Applied Physics and Chemistry] Periodical Articles

    Files in This Item:

    There are no files associated with this item.



    All items in uTaipei are protected by copyright, with all rights reserved.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback