University of Taipei:Item 987654321/16974
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 1914/17082 (11%)
造访人次 : 3959394      在线人数 : 909
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    University of Taipei > 理學院 > 資訊科學系 > 會議論文 >  Item 987654321/16974


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/16974


    题名: Corporate Default Prediction via Deep Learning
    作者: Yeh, Shu-Hao;Wang, Chuan-Ju;王釧茹;Tsai, Ming-Feng
    贡献者: 臺北市立大學資訊科學系
    关键词: default prediction;deep learning
    日期: 2014-07
    上传时间: 2019-02-14
    摘要: This paper provides a new perspective on the default prediction problem using deep learning algorithms. Via the advantages of deep learning, the representable factors of input data will no longer need to be explicitly extracted, but can be implicitly learned by the deep learning algorithms. We consider the stock returns of both default and solvent companies as input signals and adopt one of the deep learning architecture, Deep Belief Networks (DBN), to train the prediction models. The preliminary results show that the proposed approach outperforms traditional machine learning algorithms.
    關聯: The 34th International Symposium on Forecasting (ISF’14),Rotterdam,2014
    显示于类别:[資訊科學系] 會議論文

    文件中的档案:

    没有与此文件相关的档案.



    在uTaipei中所有的数据项都受到原著作权保护.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈