University of Taipei:Item 987654321/15781
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2446/17084 (14%)
Visitors : 3220487      Online Users : 520
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/15781


    Title: Adaptive Fuzzy-GARCH model applied to forecasting volatility of stock markets using particle swarm optimum algorithm
    Authors: Hung, Jui-Chung;洪瑞鍾
    Contributors: 臺北市立教育大學資訊科學系
    Date: 2011-10
    Issue Date: 2017-07-24 11:28:05 (UTC+8)
    Abstract: Fluctuations in the stock market follow the principle of volatility clustering in which changes are cataloged by similarity; as such, large changes tend to follow large changes, and small changes tend to follow small changes. This clustering is one of the major reasons why many generalized autoregression conditional heteroscedasticity (GARCH) models do not forecast the stock market well. In this paper, an adaptive Fuzzy-GARCH model with particle swarm optimization (PSO) is proposed to solve this problem. The adaptive Fuzzy-GARCH model refers to both GARCH models and the parameters of membership functions, which are determined by the characteristics of market itself. Here, we present an iterative algorithm based on PSO to estimate the parameters of the membership functions. The PSO method aims to achieve a global optimal solution with a rapid convergence rate. The three stock markets of Taiwan, Japan, and Germany were analyzed to illustrate the performance of the proposed method.
    Relation: Information Sciences, vol. 181, pp. 4673-4683
    Appears in Collections:[Department of Computer Science] Periodical Articles

    Files in This Item:

    There are no files associated with this item.



    All items in uTaipei are protected by copyright, with all rights reserved.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback