University of Taipei:Item 987654321/15776
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2446/17084 (14%)
Visitors : 3225732      Online Users : 827
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/15776


    Title: Modified Particle Swarm Optimization Structure Approach to Direction of Arrival Estimation
    Authors: Hung, Jui-Chung;洪瑞鍾
    Contributors: 臺北市立教育大學資訊科學系
    Keywords: Particle swarm optimization;First-order Taylor series;Code-division multiple access;Direction-of-arrival estimation
    Date: 2013-01
    Issue Date: 2017-07-24 11:27:58 (UTC+8)
    Abstract: This study considers the problem of estimating the direction-of-arrival (DOA) for code-division multiple access (CDMA) signals. In this type of problem, the associated cost function of the DOA estimation is generally a computationally-expensive and highly-nonlinear optimization problem. A fast convergence of the global optimization algorithm is therefore required to attain results within a short amount of time. In this paper, we propose a new application of the modify particle swarm optimization (MPSO) structure to achieve a global optimal solution with a fast convergence rate for this type of DOA estimation problem. The MPSO uses a first-order Taylor series expansion of the objective function to address the issue of enhanced PSO search capacity for finding the global optimum leads to increased performance. The first-order Taylor series approximates the spatial scanning vector in terms of estimating deviation results in and reducing to a simple one-dimensional optimization problem and the estimating deviation has the tendency to fly toward a better search area. Thus, the estimating deviation can be used to update the velocity of the PSO. Finally, several numerical examples are presented to illustrate the design procedure and to confirm the performance of the proposed method.
    Relation: Applied Soft Computing, vol. 13, pp. 315-320
    Appears in Collections:[Department of Computer Science] Periodical Articles

    Files in This Item:

    There are no files associated with this item.



    All items in uTaipei are protected by copyright, with all rights reserved.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback