English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 1914/17082 (11%)
造訪人次 : 3942487      線上人數 : 1058
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    University of Taipei > 理學院 > 資訊科學系 > 期刊論文 >  Item 987654321/15773


    請使用永久網址來引用或連結此文件: http://utaipeir.lib.utaipei.edu.tw/dspace/handle/987654321/15773


    題名: Robust Kalman filter based on a fuzzy GARCH model to forecast volatility using particle swarm optimization
    作者: Hung, Jui-Chung;洪瑞鍾
    貢獻者: 臺北市立大學資訊科學系
    關鍵詞: Particle swarm optimization (PSO);Fuzzy system;Forecasting volatility;Robust Kalman filter;Generalized autoregressive conditional heteroskedasticity (GARCH) model
    日期: 2015
    上傳時間: 2017-07-24 11:27:54 (UTC+8)
    摘要: Stock market volatility comprises complex characteristics of time-varying irregular behavior and asymmetric clustering properties with respect to both positive and negative stock index returns. In this paper, we present a fuzzy-GARCH model to analyze asymmetric clustering properties and a robust Kalman filter to address the problem of the time-varying irregular behavior of volatility. In our approach, we first use a fuzzy system to analyze clustering regimes based on stock market index returns. Second, we use the clustering regimes of the first stage to set up generalized autoregressive conditional heteroskedasticity (GARCH) models and reformulated state space. Finally, we use a robust Kalman filter to reduce time-varying complexity when forecasting volatility. The proposed method is based on state space and joins the parameters of membership functions and GARCH models that are highly complex and nonlinear. We present an iterative algorithm based on particle swarm optimization to estimate parameters of the membership functions and GARCH models. The effectiveness of the approach is demonstrated on stock market data from the Taiwan Stock Exchange Weighted Index (Taiwan), Hang Seng Index (Hong Kong), and Japan Nikkei 225 Index (Japan). From the simulation results, we determine that forecasting of out-of-sample volatility performance is significantly improved when the GARCH model considers both asymmetric effect and robust adaptive forecasting.
    關聯: Soft Computing, Vol. 19, Issue 10, pp 2861-2869
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在uTaipei中所有的資料項目都受到原著作權保護.


    如有問題歡迎與系統管理員聯繫
    02-23113040轉2132
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋